
Towards Understanding Expert Coding of Student Disengagement in Online

Learning

Luc Paquette (paquette@tc.columbia.edu)
Department of Human Development,

Teachers College, Columbia University, New York, NY, 10027

Adriana M.J.A. de Carvalho (adrianac@cs.cmu.edu)
Human-Computer Interaction Institute,

Carnegie Mellon University, Pittsburgh, PA, 15213

Ryan S. Baker (baker2@exchange.tc.columbia.edu)
Department of Human Development,

Teachers College, Columbia University, New York, NY, 10027

Abstract

Gaming the system, a behavior where students disengage
from a learning environment and attempt to succeed by
exploiting properties of the system, has been shown to be
associated with lower learning. Machine learned and
knowledge engineered models have been created to identify
gaming behaviors, but few efforts have been made to
precisely identify how experts code gaming behaviors. In this
paper, we used cognitive task analysis to elicit knowledge
about how experts code students as gaming or not in
Cognitive Tutor Algebra. We show how building a cognitive
model of this process gave us insights about the behaviors
gaming is composed of.

Keywords: Gaming the system, Cognitive Tutor, cognitive
modeling, expert coding.

Introduction

In recent years, there has been increasing awareness that

students often disengage from interactive environments by

"gaming the system", defined as "attempting to succeed in

an educational environment by exploiting properties of the

system rather than by learning the material and trying to use

that knowledge to answer correctly" (Baker et al. 2008).

Gaming the system has been studied in multiple learning

systems (Baker et al. 2008; Baker et al. 2010; Baker,

Mitrovic, & Mathews 2010; Beal, Qu, & Lee 2006; Johns &

Woolf 2006; Muldner et al. 2011; Walonoski & Heffernan

2006a) and has been shown to be related to poorer learning

outcomes (Cocea, Hershkovitz, & Baker 2009; Fancsali

2013; Pardos et al. 2013), boredom (Baker et al. 2010), and

poorer long-term academic success (San Pedro et al. 2013).

Models of gaming the system have been created using

both knowledge engineering (Aleven et al. 2006; Beal, Qu,

& Lee 2006; Gong et al. 2010; Johns, & Woolf 2006;

Muldner et al. 2011; Walonoski and Heffernan 2006a) and

machine learning (Baker et al. 2008; Baker, Mitrovic, &

Mathews 2010; Walonoski, & Heffernan 2006a)

approaches. Both approaches have been successful at

allowing educational systems to intervene when students are

gaming the system (Arroyo et al. 2007; Walonoski &

Heffernan 2006b) and understanding the relationship

between gaming and other constructs, but they do not

implement a deep understanding of the construct of gaming

the system and of the context of the student's actions as

experts do when coding gaming behaviors.

In particular, instead of studying how experts code

gaming behaviors, knowledge engineered models have

typically implemented simple versions of two types of

behaviors related to gaming (Baker et al. 2008), help abuse

(Aleven et al. 2006) and systematic guessing. Help abuse

has mainly been modeled using behaviors that include

copying the answer from a hint (Gong et al. 2010; Johns, &

Woolf 2006; Muldner et al. 2011) and repeated help

requests (Beal, Qu, & Lee 2006; Walonoski, & Heffernan

2006a), but few efforts have been made to understand how

expert coders determine when those behaviors are instances

of gaming. Struggling students will often look at multiple

help messages and might sometime copy answers from hints

as part of their learning process. As we will discuss, expert

coders rely on the context in which those behaviors take

place to determine if the student is gaming or not.

 Systematic guessing is usually defined as quickly

answering after errors (Beal, Qu, & Lee 2006; Gong et al.

2010; Johns, & Woolf 2006; Muldner et al. 2011) and

making successive errors (Walonoski, & Heffernan 2006a).

Similarly to help abuse, many instances of those behaviors

can be associated with normal use of the learning

environment. For example some minor errors can be very

quickly corrected, a behavior that looks similar to guessing.

In those situations, expert coders will once again look at the

context in which the actions were executed in order to

determine if they are systematic guesses or not.

The machine learning approach, on the other hand,

captures part of the context of the student's gaming

behaviors, but it is not easy to fully understand what context

the models capture and to evaluate whether it corresponds to

expert judgments. In other words, machine learning often

makes the same predictions as experts, but may be doing so

in different ways.

Studying the context used by experts when coding the

student's gaming behaviors would be a potentially valuable

step towards getting a deeper understanding of this construct

and modeling it better, whether using machine learning,

knowledge engineering or both. To achieve this, we used

cognitive task analysis (Cooke 1994; Clark et al. 2008) to

elicit the expert's process of coding gaming behaviors using

text replays from Cognitive Tutor Algebra (Koedinger, &

Corbett 2006). Using the knowledge we acquired, we built a

cognitive model of how an expert codes gaming behaviors

and validated it against the expert's judgment.

Method

Data

In order to study how experts code gaming behaviors, we

used data obtained from 59 students using the Cognitive

Tutor Algebra system during an entire school year as part of

their regular mathematics curriculum. The Cognitive Tutor

environment offers mathematical problems broken down

into the steps of the process used to solve the problem. As

the student works through the problem, a cognitive model of

the task assesses whether the student's answers map to a

correct step. Cognitive Tutors also offer multi-step hints. A

student who is struggling can ask for help at anytime and

the system will provide increasingly specific hints about

what should be done next.

Data from 12 tutor lessons was obtained and segmented in

sequences of 5 actions, called clips, illustrating the student's

behavior. A total of 10,397 clips from this dataset were

randomly selected; the chance of a clip being selected was

weighted for each lesson according to the total number of

clips in that lesson. Those clips were previously coded by an

expert in order to develop machine-learned gaming models

(e.g. Baker, & de Carvalho 2008), and contains 708

examples of gaming the system and 9,689 examples of

behaviors that were not coded as gaming.

Studying expert coding

In order to code clips of student behaviors as gaming the

system or not, experts can use text replays (Baker, Corbett,

& Wagner 2006; Baker, & de Carvalho 2008), clips of

student behaviors in a textual form. A clip of a pre-selected

duration (in terms of time or length) is shown in a textual

format giving information about the actions and their

context. In the example shown in figure 1, the expert sees

each action's time (relative to the first action in the clip), the

problem context, the input entered, the relevant skill

(production) and how the system assessed the action (right,

wrong, a help request or a "bug"). The expert can then

choose whether the behavior is gaming or not, or indicate

that something has gone wrong in the text replay software or

logs, making the clip uncodeable. When coding gaming

behaviors using text replays, experts typically achieve an

inter-rater reliability, measured using Cohen's Kappa,

around 0.60 (Baker, Corbett, & Wagner 2006).

Figure 1: The last 2 actions of a 5-action text replay clip.

To elicit knowledge about the expert's process of coding

gaming behaviors using text replays, we used a cognitive

task analysis (Cooke 1994; Clark et al. 2008) approach in

which knowledge was elicited through observations and

interviews. The first author acted as elicitor and the second

author was the domain expert. The second author, to the

best of our knowledge, has conducted more text replay

coding of student behavior in intelligent tutoring systems

than anyone else in the world, has conducted text replays for

a range of problems and learning environments, and has

trained others in the method.

We studied how the expert coded gaming behaviors when

using text replays from Cognitive Tutor Algebra. To elicit

the expert's knowledge, an "active participation" (Cooke

1994; Meyer 1992) approach was used to collect

preliminary knowledge of the task. During those sessions,

the expert explained to the elicitor how to identify gaming

behavior using text replays. The elicitor coded a few clips

while thinking aloud as the expert commented and corrected

his thought process. This allowed the elicitor to acquire a

good understanding of the process, enabling him to better

communicate with the expert.

Once the elicitor had understood the process of coding

clips, additional observations sessions were conducted in

which the expert coded clips while thinking aloud (Van

Someren et al. 1994) with minimal inputs from the elicitor.

Using this method, we were able to observe and collect

information about how the expert codes behaviors without

biasing her thought process by asking questions about it.

Those sessions were recorded and were used by the elicitor

to elaborate an initial version of the cognitive model.

This initial version of the model was implemented and

executed on a subset of our data. The complete set of 10,397

clips was separated in a training and a test set. The training

set was composed of 75% of the clips coded as gaming and

75% of the clips coded as non-gaming, and the test set was

composed of the remaining 25%. As such, the training set

contained 531 gaming and 7,267 non-gaming clips and the

test set contained 177 gaming and 2,422 non-gaming clips.

Clips for each subset were chosen at random.

Separating the dataset into two subsets is essential to

developing and validating a model. In order to elaborate the

model, the knowledge elicitor and the expert need to look at

and analyze clips of student behaviors. Having two subsets

allows them to look at a restricted part of the data (the

training set) while the rest of the data (the test set) remains

unseen. The unseen data can then be used to validate the

performance of the model elaborated on the training set.

This ensures that the model is not overly specific to the data

that was used to train it.

An initial model was developed and applied to the

training set. Then, the clips that were misclassified by the

model were collected. Additional sessions were conducted

with the expert to examine those specific clips. The expert

coded them while thinking aloud and the knowledge elicitor

asked questions to precisely identify what allowed the

expert to determine whether a clip was considered as

gaming or not. This allowed us to formalize information that

might have been omitted by the expert while thinking aloud.

These sessions were also recorded.

The knowledge acquired from those sessions was

included in a new version of the model that was once again

executed on the training set. This process was repeated

multiple times to iteratively improve our model by

identifying situations where the model was unable to

correctly classify gaming behaviors (false negatives) and to

make the model more stringent to prevent false positives

(non-gaming behaviors classified as gaming by the model).

Model

The cognitive process of an expert judging whether a clip of

actions is an example of gaming the system can be separated

in two main parts: interpreting the student's actions and

identifying patterns of gaming. Although those two parts are

usually done simultaneously by the expert, the cognitive

model can do them separately without hindering the process.

Interpreting the student's actions

The first thing the expert does when looking at a text replay

is to look at the pauses between each action to build a likely

interpretation of the student's mental process. Each pauses

before or after an action is an opportunity for the student to

think about the problem he/she is currently solving. Table 1

provides a list and a description of constituents of the

students' behaviors that were identified during the

knowledge elicitation process with the expert.

In Cognitive Tutor Algebra, students can execute two

types of actions: help requests and step attempts. Help can

be requested more than once consecutively to obtain

increasingly specific help messages until the tutor provides

the answer (within a “bottom-out hint”). The length of the

pause before an help request indicates whether the student

took the time to think about the next step before asking for

help. The length of the pause after receiving help indicates

whether the student took the time to read the help message,

was scanning the help message for specific information or

was searching for a bottom-out hint.

Step attempts can be assessed by the system as being

correct (right) or incorrect (wrong or bug). Bugs are

incorrect answers expected by the system. When a bug is

entered, the system provides the student with a message

explaining the error.

Pauses before step attempts indicate whether the student

took the time to think about the step before attempting it or

if it is more likely that he/she was guessing the answer. In

cases where this pause is short, it is also possible that the

student planned one step ahead. In those cases, the previous

step attempt should have been right and should have a long

pause before it. When a step is assessed as incorrect, a pause

after that step indicates that the student is thinking about

his/her mistake. A bug message for an incorrect step gives

additional information that can be used to interpret the

student's action. Since bugs are expected mistakes, a long

pause before the bug is usually an indicator of an

unsuccessful but sincere attempt to solve the problem,

whereas a short pause is usually an indicator of students

trying to guess the answer by entering values taken from the

problem statement. In addition, bugs are followed by an

error message and thus, as for help requests, a long pause

after a bug is an indicator that the student read the message

provided by the system.

In addition to interpreting the pauses before and after

actions, the expert also identifies relevant constituents in the

answers inputted by the student. We identified four such

constituents. First, the student might reuse the same answer

multiple times in different contexts of the user interface. For

example, the student might input the answer 5 in every text

field. Second, the student might stop working on a part of

the problem that he/she doesn't know how to solve and start

working on a different part of the problem ([switched

context before correct] in table 1). For example, attempting

to answer part of the problem, getting an incorrect answer

and then asking for help on a different part of the problem.

Third, the student might input an answer that is similar to

his/her previous input. For example, entering the sequence

of answers 10, 20, 30, etc. Finally, the student might repeat

the exact same step. For example, entering the same answer

in the same text field.

Two main elements of the process of interpreting the

student's actions remain ambiguous and difficult to

accurately represent in the current version of our model: the

time thresholds used to determine whether a pause is short

or long and deciding whether two answers are similar. The

time thresholds for pauses were defined using numbers that

were often used by the expert as rules of thumb (table 1). An

alternate approach would be to try to determine time

thresholds empirically (cf. Baker et al. 2011).

To decide whether two answers are similar, we computed

the Levenshtein distance (Levenshtein 1966) between the

answer strings. This distance is defined by the number of

edits (deletion, insertion or substitution of individual

symbols) required to transform an answer and make it

identical to the other one. Answers with a distance of 1 or 2

were considered as being similar. This approach worked

well for numerical answers, but had issues with other types

of answers. For example, it does not allow the detection of

semantic similarities between text inputs such as seconds,

minutes and hours. It also has issues dealing with equations.

For this type of answer, "425x+150" will be considered

similar to "425x-150", but "150x-425" will not.

Once we had identified the different constituents of the

student's behavior that the expert pays attention to, we

implemented them in our model. Our model simply iterates

through all of the student's actions and label each of them

using the rules defined in table 1.

Table 1 : List of the interpretations considered by the coder. Time thresholds are selected by the expert coder.

Identifier Description

[did not think before help request] Pause smaller or equal to 5 seconds before a help request

[thought before help request] Pause greater or equal to 6 seconds before a help request

[read help messages] Pause greater or equal to 9 seconds per help message after a help request

[scanning help messages] Pause between 4 and 8 seconds per help message after a help request

[searching for bottom-out hint] Pause smaller or equal to 3 seconds per help message after a help request

[thought before attempt] Pause greater or equal to 6 seconds before step attempt

[planned ahead] Last action was a correct step attempt with a pause greater or equal to 11 seconds

[guess] Pause smaller or equal to 5 seconds before step attempt

[unsuccessful but sincere attempt] Pause greater than or equal to 6 seconds before a bug

[guessing with values from problem] Pause smaller than or equal to 5 seconds before a bug

[read error message] Pause greater than or equal to 9 seconds after a bug

[did not read error message] Pause smaller than or equal to 8 seconds after a bug

[thought about error] Pause greater than or equal to 6 seconds after an incorrect step attempt

[same answer/diff. context] Answer was the same as the previous action, but in a different context

[similar answer] Answer was similar to the previous action (Levenshtein distance of 1 or 2)

[switched context before right]
Context of the current action is not the same as the context for the previous (incorrect)

action (referred to as “soft underbelly” in Baker, Mitrovic, & Mathews 2010)

[same context] Context of the current action is the same as the previous action

[repeated step] Answer and context are the same as the previous action

[diff. answer AND/OR diff. context] Answer or context is not the same as the previous action

Table 2 : Action patterns considered gaming the system. Constituents associated with each action are between brackets.

Pattern
Training Test

TP FP Kappa TP FP Kappa

incorrect → [guess] & [same answer/diff. context] & incorrect
92

17.33%

66

0.91%
0.243

47

26.55%

20

0.83%
0.219

incorrect → [similar answer] [same context] & incorrect →

[similar answer] & [same context] & attempt

112

21.09%

173

2.38%
0.238

25

14.12%

62

2.56%
0.151

incorrect → [similar answer] & incorrect → [same answer/diff.

context] & attempt

33

6.21%

19

0.26%
0.102

10

5.65%

6

0.25%
0.093

[guess] & incorrect → [guess] & [diff. answer AND/OR diff.

context] & incorrect → [guess] & [diff. answer AND/OR diff.

context & attempt

55

10.36%

92

1.27%
0.137

22

12.43%

33

1.36%
0.163

incorrect → [similar answer] & incorrect → [guess] & attempt
118

22.22%

204

2.81%
0.237

33

18.64%

70

2.89%
0.195

help & [searching for bottom-out hint] → incorrect → [similar

answer] & incorrect

23

4.33%

52

0.72%
0.060

11

6.21%

24

0.99%
0.083

incorrect → [same answer/diff. context] & incorrect →

[switched context before correct] & attempt/help

49

9.23%

72

0.99%
0.201

24

13.56%

19

0.78%
0.197

bug → [same answer/diff. context] & correct → bug
20

3.77%

16

0.22%
0.062

9

5.08%

5

0.21%
0.085

incorrect → [similar answer] & incorrect → [switched context

before correct] & incorrect

50

9.42%

52

0.72%
0.146

16

9.04%

16

0.66%
0.135

incorrect → [switched context before correct] & incorrect →

[similar answer] & incorrect

58

10.92%

55

0.76%
0.151

20

11.30%

17

0.70%
0.167

incorrect → [similar answer] & incorrect → [did not think

before help] & help → incorrect (with first or second answer

similar to the last one)

47

8.85%

57

0.78%
0.129

10

5.65%

24

0.99%
0.074

help → incorrect → incorrect → incorrect (with at least one

similar answer between steps)

45

8.47%

83

1.14%
0.113

15

8.47%

32

1.32%
0.108

incorrect → incorrect → incorrect → [did not think before

help request] & help (at least one similar answer between steps)

83

15.63%

154

2.12%
0.182

23

12.99%

60

2.48%
0.140

Identifying patterns of gaming the system

Once the expert has interpreted the student's actions, she

uses the interpretation's constituents to judge whether the

student is gaming the system. Although some constituents,

such as searching for bottom-out hints and guessing the

answer, are usually associated with gaming and others, such

as getting the right answer, are usually associated with non-

gaming behaviors, looking at each constituent individually

is not sufficient to code the student's behavior. The expert

instead tries to find a pattern of actions and constituents that

acts as strong evidence that the student is gaming.

Some patterns might involve sequences of incorrect

actions -- for example, reusing the same number in multiple

different contexts of the interface to try to guess where the

number goes. This can also be combined with bottom-out

hints -- for example, searching for a bottom-out hint, getting

the wrong answer and then trying a similar answer.

It is also possible for gaming patterns to include

constituents that are usually associated to non-gaming

behaviors. For example, getting the right answers is not

evidence of gaming, but a student who enters a bug, fixes it

by trying the same answer in a different context, and enters

a second bug, may be considered as gaming. In this pattern,

the first action might have been a small mistake that was

easily corrected by entering the same answer in a different

context, but the second bug makes it a strong indicator that

the correct step was a guess rather than an intentional

correction and that the student is trying to game the system.

During the knowledge elicitation process, we identified

13 patterns (table 2) that the expert considers sufficient to

code a clip as an example of gaming the system. Additional

patterns were developed, but were not included in the final

model if: 1) they were only found in a small number of

gaming clips, 2) they had too much overlap with other

patterns or 3) they produced too many false positives.

Our final model uses a sliding window approach iterating

over the student's actions to identify gaming clips. Every

sequence of 2, 3 or 4 actions in a clip are examined to

determine if they match any of the 13 patterns from table 2.

If at least one such match is found, the clip is classified as

gaming, otherwise it is classified as non-gaming.

Validation

The performance of our model was assessed using Cohen's

Kappa (Cohen 1960), a metric that assesses the degree to

which the model is better than chance at identifying gaming

clips. A Kappa of 0 indicates that the model performs at

chance and a Kappa of 1 indicates that it performs perfectly.

We validated our model by computing its performance for

both the complete model composed of the 13 patterns and

sub-models that matched only one pattern. Table 2 lists the

performance for each patterns by indicating their Kappa,

how many clips containing this pattern had been coded by

the expert as gaming (true positives or TP) and how many

had been coded as non-gaming (false positives or FP).

Each individual pattern has an above chance performance

at detecting gaming clips, with a Kappa of 0.060 or better on

the training set. Although some patterns detect a higher

number of FP than TP, each pattern detects a higher

percentage of the TP than of the FP (as there are many more

non-gaming clips than gaming clips in this dataset). Some of

the patterns with a low number of TP were included in the

model as they still contributed to the performance of the

model when all patterns were combined. This is usually an

indicator that they capture a different subset of gaming

behaviors than the other patterns.

When the complete model was applied to the training set,

it accurately detected 340 (64.03%) gaming clips,

misdiagnosed 551 (7.07%) non-gaming clips and obtained a

Kappa of 0.430. For the test set, the model accurately

detected 93 (52.54%) gaming clips, misdiagnosed 210

(8.67%) non-gaming clips and obtained a Kappa of 0.330.

The performance of our cognitive model was similar to

the best machine learned model of gaming that was

developed for the same dataset (Baker, & de Carvalho

2008). The machine learned model obtained a Kappa of 0.40

when the model was trained and tested on the same dataset.

This is a little below the Kappa of 0.430 that was achieved

by our model on the training set. To further validate our

model, we applied it to an unseen test set and obtained a

Kappa of 0.330. Although performance decreased, the

Kappa we obtained indicates that an important part of our

model generalizes to new data. In as yet unpublished work,

the modeling approach used by Baker, & de Carvalho

(2008) achieved a Kappa of 0.24 when applied to held-out

data, suggesting that our cognitive model is mildly better

than the one from Baker, & de Carvalho (2008).

Discussion and conclusion

In this paper, we used cognitive task analysis (Cooke 1994;

Clark et al. 2008) to understand how an expert codes

sequences of actions (clips) in an interactive learning

environment as gaming the system or not. This allowed us

to acquire a better understanding of what experts include in

their definition of this disengaged behavior. We used the

knowledge elicited from the expert to implement a cognitive

model of the process of coding gaming behaviors using text

replays from Cognitive Tutor Algebra.

The patterns that we identified when building our model

provided insights about what behaviors experts consider as

gaming the system. Gaming has been defined by two main

types of behaviors: systematic guessing and help abuse. In

previous knowledge engineered models (Beal, Qu, & Lee

2006; Gong et al. 2010; Johns, & Woolf 2006; Muldner et

al. 2011), systematic guessing has mainly been defined as

short pauses between step attempts. Although this behavior

was included in our model, we also found that entering the

same answer in multiple contexts and entering similar

answers are two key aspects of the students' guessing

behaviors that have often been overlooked.

Surprisingly few of our gaming patterns included

searching for bottom-out hints. As our model currently

correctly classifies 61.15% of the instances of gaming from

our dataset, it is possible that additional gaming behaviors

that include searching for bottom-out hints could be

discovered in the future. Other occurrences of help requests

we observed in our patterns included quickly asking for help

without thinking about the step and entering multiple

incorrect answers despite asking for help.

Our current model was built using data from only one

system (Cognitive Tutor Algebra) and the insights of only

one expert. As such, it will be important to study whether

different experts consider different behaviors to be gaming

the system and whether our model is effective when applied

to data from other systems. Examining the performance of

our complete model and of individual patterns on those new

systems would provide us with interesting insights about

differences in how students game in different systems.

Similarly, our model could be used as a tool for studying the

cultural aspects of gaming the system by comparing the

frequency of each pattern of gaming in different cultures.

Acknowledgments

This research was supported by a Fonds de recherche du

Québec - Nature et technologies post-doctoral fellowship

and by National Science Foundation grant #SBE-0836012.

References

Aleven, V., McLaren, B. M., Roll, I., Koedinger, K. R.

(2006). Toward Meta-Cognitive Tutoring: A Model of

Help Seeking with a Cognitive Tutor. Int'l Journal of

Artificial Intelligence in Eduaction, 16, 101-130.

Arroyo, I., et al. (2007). Repairing Disengagement with

Non-Invasive Interventions. Proc of AIED 2007, 195-202.

Baker, R. S. J. d., Corbett, A. T., Roll, I., Koedinger, K. R.

(2008). Developing a Generalizable Detector of When

Students Game the System. User Modeling and User

Adapted Interaction, 18, 287-314.

Baker, R. S. J. d., Corbett, A. T., Wagner, A. Z. (2006).

Human Classification of Low-Fidelity Replays of Student

Actions. Proc of EDM Workshop at ITS 2006, 29-36.

Baker, R. S. J. d., D'Mello, S. K., Rodrigo, M. M. T.,

Graesser, A. C. (2010). Better to Be Frustrated than

Bored: The Incidence, Persistence, and Impact of

Learners' Cognitive-Affective States During Interactions

with Three Different Computer-Based Learning

Environments. Int'l Journal of Human-Computer Studies,

68, 223-241.

Baker, R. S. J. d., de Carvalho, A. M. J. A. (2008). Labeling

Student Behavior Faster and More Precisely with Text

Replays. Proc of EDM 2008, 38-47.

Baker, R. S. J. d., Gowda, S., Corbett, A. T. (2011).

Towards Predicting Future Transfer of Learning. Proc of

AIED 2011, 23-30.

Baker, R. S. J. d., Mitrovic, A., Mathews, M. (2010).

Detecting Gaming the System in Constraint-Based Tutors.

Proc of UMAP 2010, 267-278.

Beal, C. R., Qu, L., Lee, H. (2006). Classifying Learner

Engagement Through Intergration of Multiple Data

Sources. Proc of AAAI-06, 2-8.

Clark, R. E., Feldon, D., van Merriënboer, J., Yates, K.,

Early, S. (2008). Cognitive Task Analysis. In J. M.

Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P.

Driscoll (Eds.), Handbook of Research on Educational

Communications and Technology (3rd ed.), 575-593.

Cocea, M., Hershkovitz, A., Baker, R. S. J. d. (2009). The

Impact of Off-Task and Gaming Behaviors on Learning:

Immediate or Aggregate? Proc of AIED 2009, 507-514.

Cohen, J. (1960). A Coefficient of Agreement for Nominal

Scales. Educational and Psychological Measurement, 20

(1), 37-46.

Cooke, N. J. (1994). Varieties of Knowledge Elicitation

Techniques. Int'l Journal of Human-Computer Studies,

41, 801-849.

Fancsali, S. E. (2013). Data-Driven Causal Modeling of

"Gaming the System" and Off-Task Behavior in

Cognitive Tutor Algebra. NIPS Workshop on Data Driven

Education.

Gong, Y., Beck, J., Heffernan, N. T., Forbes-Summers, E.

(2010). The Fine-Grained Impact of Gaming (?) on

Learning. Proc of ITS 2010, 194-203.

Johns, J., Woolf, B. (2006). A Dynamic Mixture Model to

Detect Student Motivation and Proficiency. Proc of AAAI-

06, 163-168.

Koedinger, K. R., Corbett, A. T. (2006). Cognitive Tutors:

Technology Bringing Learning Sciences to the

Classroom. In R. K. Sawyer (Ed.), The Cambridge

Handbook of the Learning Sciences, 61-77.

Levenshtein, A. (1966). Binary Codes Capable of

Correcting Deletions, Insertions and Reversals. Soviet

Physics Doklady, 10 (8), 707-710.

Meyer, M. A. (1992). How to Apply the Anthropological

Technique of Participant Observation to Knowledge

Acquisition for Expert Systems. IEEE Transactions on

Systems, Man, and Cybernetics, 22, 983-991.

Muldner, K., Burleson, W., Van de Sande, B., VanLehn, K.

(2011). An Analysis of Students' Gaming Behaviors in an

Intelligent Tutoring System: Predictors and Impact. User

Modeling and User Adapted Interaction, 21, 99-135.

Pardos, Z. A., Baker, R. S. J. d., San Pedro, M. O. C. Z.,

Gowda, S. M., Gowda, S. M. (2013). Affective States and

State Tests: Investigating how Affect Throughout the

School Year Predicts End of Year Learning Outcomes.

Proc of LAK 2013, 117-124.

San Pedro, M. O. Z., Baker, R. S. J. d., Bowers, A., J.,

Heffernan, N. T. (2013). Predicting College Enrolment

from Student Interaction with an Intelligent Tutoring

System in Middle School. Proc of EDM 2013, 177-184.

Van Someren, M. W., Barnard, Y. F., Sandberg, J. A. C.

(1994). The Think Aloud Method: A Practical Guide to

Modeling Cognitive Processes.

Walonoski, J. A., Heffernan, N. T. (2006a). Detection and

Analysis of Off-Task Gaming Behavior in Intelligent

Tutoring Systems. Proc of ITS 2006, 382-391.

Walonoski, J. A., Heffernan, N. T. (2006b). Prevention of

Off-Task Gaming Behavior in Intelligent Tutoring

Systems. Proc of ITS 2006, 722-724.

